Reg. No.:				
1008: 110.	1 - 1		Fig. 1	- 1

Question Paper Code: 23447

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Fourth Semester

Electronics and Communication Engineering

EC 2253 — ELECTROMAGNETIC FIELDS

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State Stokes theorem.
- 2. What is the relationship between electric scalar potential and electric field intensity?
- 3. State Biot-Savarts law.
- 4. Define magnetic vector potential.
- 5. Express Laplace equation in spherical coordinates.
- 6. Write the expression for energy stored in an inductor.
- 7. Define Faraday's law of Electromagnetic induction.
- 8. An EM wave has E_x and H_y as components of electric and magnetic fields respectively. Find the direction of power flow.
- 9. Write the constitutive relations concerning the characteristics of the medium in which the fields exist.
- 10. Write the equation for Brewster angle.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	A charge $Q_1 = 3 \times 10^{-4} C$ is at a point $M(1, 2, 4)$ and a second charge $Q_2 = -10^{-4} C$ located at a point $N(2, 0, 10)$ in vacuum. Find	the	
			force exerted on Q_2 by Q_1 .	(4)	
	V.	(ii)	Infinite uniform line charges of 5 nC/m lie along the x and y axes free space. Find E at $P_A(0,0,4)$ and at $P_B(0,3,4)$.	s in (4)	
		(iii)	Derive an expression for Electric field on the axis of a uniform charged circular disc.	nly (8)	
		1	Or		
14	(b)	(i)	Define divergence and curl.	(4)	
	(~)	(ii)	Derive an expression for potential due to electric dipole.	(6)	
		(iii)	State Gauss law and prove it.	(6)	
12.	(a)	(i)	Derive an expression for magnetic field intensity due to a lin conductor of infinite length carrying current I at a distant point Assume R to be the distance between conductor and point P . Biot Savart's Law.	t <i>P</i> .	
1 1		(ii)	Derive an expression for magnetic field intensity on the axis circular loop of radius 'a' carrying current I.	of a (8)	
- ,,			Or		
1 To	(b)	(i)	Obtain the expressions for scalar and vector magnetic potential.	(8)	
У	(0)		At a point $P(x, y, z)$ the components of vector magnetic poten		
	4			and	
3 3.0			$A_z = 2x + 3y + 5z$. Determine the magnetic flux density \overline{B} at point P .	the (4)	
			$\overline{D} = 2\pi \left(\frac{\pi x}{2} \right) = \frac{-2y}{2} = Wb$	2	
		(iii)	(2)	m ,	
1.5			find the total magnetic flux crossing the strip defined $z = 0, y \ge 0, 0 \le x \le 2m$.	by (4)	
13.	(a)	Dei	rive the boundary relations for		
		(i)	${ m E}$ — field	(8)	
		(ii)		(8)	
	6 10		Or	no is	
(b) A composite conductor of cylindrical cross section used in overhead made of a steel inner wire of radius "a" and an annular outer condu- radius "b", the two having electrical contact. Evaluate the H within the conductors and the internal self — inductance per unit of the composite conductor.					

14.	(a)	(1)	Derive the Maxwell's second equation from Faraday's law.	(8)
		(ii)	In a material for which $\sigma = 5.0s/m$, and $\varepsilon_r = 1$, the electric	field
			intensity is $\overline{E} = 250 \sin 10^{10} tV/m$. Find the conduction	and
			displacement current densities, and the frequency at which have equal magnitudes.	both (8)
we .			Or	
	(b)	(i)	Explain the following: Poynting vector, average power instantaneous power.	and (8)
		(ii)	In free space, $H = 0.2\cos(\omega t - \beta x)\alpha_z A/m$. Find the total popassing through a circular disc of radius 5 cm.	
15.	(a)	$egin{array}{c} A & { m p} \ E_{ m max} \end{array}$	lane sinusoidal electromagnetic wave traveling in space $=150\mu V/m$.	has (16)
		(i)	Find the accompanying H_{\max} .	Topic
		(ii)	Propagation is in X direction and H is oriented in Y direction. We is the direction of E ?	hat
		(iii)	Compute the average power transmitted.	
			Or	
	(b)	Expla	ain in detail on what happens when the wave is incident?	
		(i) .	Normally on nowfoot can direction	(8)
		(ii)	Obliquely to the surface of perfect dielectrics.	(8)

